skip to main content


Search for: All records

Creators/Authors contains: "Ghadai, Sambit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (corresponding to actuators in engineering systems) are equally perverse, but such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose the white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results showed that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource, an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents. 
    more » « less
  2. Abstract

    Computer-aided Design for Manufacturing (DFM) systems play an essential role in reducing the time taken for product development by providing manufacturability feedback to the designer before the manufacturing phase. Traditionally, DFM rules are hand-crafted and used to accelerate the engineering product design process by integrating manufacturability analysis during design. Recently, the feasibility of using a machine learning-based DFM tool in intelligently applying the DFM rules have been studied. These tools use a voxelized representation of the design and then use a 3D-Convolutional Neural Network (3D-CNN), to provide manufacturability feedback. Although these frameworks work effectively, there are some limitations to the voxelized representation of the design. In this paper, we introduce a new representation of the computer-aided design (CAD) model using orthogonal distance fields (ODF). We provide a GPU-accelerated algorithm to convert standard boundary representation (B-rep) CAD models into ODF representation. Using the ODF representation, we build a machine learning framework, similar to earlier approaches, to create a machine learning-based DFM system to provide manufacturability feedback. As proof of concept, we apply this framework to assess the manufacturability of drilled holes. The framework has an accuracy of more than 84% correctly classifying the manufacturable and non-manufacturable models using the new representation.

     
    more » « less
  3. 3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory. 
    more » « less
  4. 3D Convolutional Neural Networks (3D-CNN) have been used for object recognition based on the voxelized shape of an object. However, interpreting the decision making process of these 3D-CNNs is still an infeasible task. In this paper, we present a unique 3D-CNN based Gradient-weighted Class Activation Mapping method (3D-GradCAM) for visual explanations of the distinct local geometric features of interest within an object. To enable efficient learning of 3D geometries, we augment the voxel data with surface normals of the object boundary. We then train a 3D-CNN with this augmented data and identify the local features critical for decision-making using 3D GradCAM. An application of this feature identification framework is to recognize difficult-to-manufacture drilled hole features in a complex CAD geometry. The framework can be extended to identify difficult-to-manufacture features at multiple spatial scales leading to a real-time design for manufacturability decision support system. 
    more » « less